

Vacuum Drying: Potential for 4/4 red oak flooring lumber?

Oxana Brenes Virginia Tech December 4th, 2014

Introduction

Increasing global competition, high stumpage and energy prices, and the slowing housing market have challenged the U.S. hardwood lumber industry.

Implementation of continuous improvement programs like lean manufacturing.

Vacuum drying has the potential to reduce drying times, reduce batch sizes and have product quality comparable or superior than conventional drying.

Objective

Determine by the use of feasibility analysis (cash flow, net present value, and internal rate of return) differences between conventional and vacuum drying for 4/4 red oak lumber

2

To determine the impact on the work in process (WIP) and cycle time for a flooring manufacturer when vacuum drying technology is compared to conventional drying technology

Terms for the Project

- Conventional
 - Air drying 42 days and conventional steam kiln for 12 days
 - Green to target (8%) in 54 days
- Vacuum Drying
 - Green to target (8%) in 8 days

Objectives

5

Produced unfinished and prefinished 2.25" and 3.25" red and white oak flooring

Conventional and Vacuum drying costs

- Data was gathered from:
 - Companies that sell drying equipment
 - Companies using the different drying technologies
 - Literature

Cost Accounting Methods

- Boulet and Ouimet (1968)
- MacMillen and Wengert (1978)
- Fortin (2010)
- Reeb (2011)
- Redman (2011)

Feasibility Methods

- Engalichev and Eddy (1990)
- Holmes and Bilek (1983)
- Govett et al (1996 and 2006)

Data

	Fixed Costs		Variable Costs
1.	Buildings (\$)	1.	Forklift wage (\$/yr)
2.	Kiln (including, auxiliary equipment, boiler, installation) (\$)	2.	Lumber graders (\$/yr)
3.	Stickers (\$/MBF)	3.	Wage for kiln operator and yard supervisor (\$/yr)
4.	Pile roofs (\$/MBF)	4.	Fuel cost (\$/ton)
5.	Pile bases, bolsters (\$/MBF)	5.	Electrical cost (\$/kWh)
6.	Temporary road construction (includes drying alleys) (\$/MBF)	6.	Raw Material Cost (\$/MBF)
7.	Fences (\$)	7.	Average price of lumber (\$/M bm)
8.	Lighting systems (\$)	8.	Maintenance of kilns and boiler (\$).
9.	Drainage systems (\$)	9. 10.	Maintenance and repair of yard (\$) Snow removal (\$/yr)
10.	Sprinkler systems (\$)		
11.	Air drying area (include space between the piles) (\$/Acre)		
12.	Road area (\$/Acre)		
13.	Area for buildings, kiln, boiler, etc. (\$/Acre)		
14.	Land value (\$/Acre)		

Data

	Other important parameters for cost determination							
1.	Annual interest rate (%)	17.	Air drying time (weeks)					
2.	Tax rate to be applied to the total of taxable values (%)	18.	'Final Drying time (hrs)					
3.	Insurance rate applied to the total of insurable values (%)	19.	Volume air dry yard (Mbf)					
4.	Average drying degrades based on lumber value (percent as decimal)	20.	Initial MC (%)					
5.	Average daily volume of lumber on yard and in kilns on any given day (M	21.	Final MC (%)					
6.	Total capacity of kilns	22.	Thermal loss (%)					
7.	Number of Kilns	23.	Wood basic density (Kg)					
8.	Operational year	24.	Specific heat of hardwood (KJ/(Kg*oC)					
9.	Annual throughput (Mbf/yr)	25.	Specific heat of water (KJ/(Kg*oC)					
10.	Run times	26.	Heat of Vaporization (MJ/kg)					
11.	Klin cycles per year	27.	Specific gravity at FSP					
12.	Average length of kiln run (include loading and unloading time)	28.	Water density (kg/m3)					
13.	Number of fans	29.	Energy to heat wood (KJ)					
14.	Fan rating (kW)	30.	Energy to heat water (KJ)					
15.	Annual electrical usage attributed to drying (kWh/yr)	31.	Energy to vaporize Water (KJ)					
10			Total BTUs/charge used for drying					
16.	ruei consumption (nog waste) (tons/day)	33.	Total tons/charge used for drying					

Drying Costs

Total

\$21,217,387

Tatal Casta	Com	pany A	Company B			
(\$)	Conventional Drying	Vacuum Drying	Conventional Drying	Vacuum Drying		
Investment Costs	\$4,627,142	\$8,148,062	\$3,948,742	\$7,084,780		
Operational Costs	\$341,000	\$147,500	\$341,000	\$147,500		
Maintenance Costs	\$49,425	\$29,925	\$49,425	\$29,925		
Energy Costs	\$138,320	\$116,058	\$184,577	\$102,131		
Raw Material Cost	\$16,061,500	\$12,698,231	\$14,673,750	\$11,174,443		

Vacuum drying capital investment represented 66% -67% more than conventional drying

\$19,197,494

\$18,538,779

\$21,139,776

Feasibility Analysis

- Cash flow was performed for a period of 20 years.
- Cash flow (Keowon et. al 2006):
 - 1) Operating \rightarrow sales growth/year
 - 2) Investing \rightarrow assets + depreciation
 - 3) Financing Activities \rightarrow bank loan and interest rate
- NPV

$$NPV = \sum_{t=0}^{n} \frac{R_t - C_t}{(1+i)^t} - C_0$$

Where i: is the interest rate; t: is the year; n: is the economic life of a system R_t : is the revenue earned C_t : is the cost of a system in year t Co: initial investment

$IRR(X) = min_{d>0} \{ E[NPV(X, D)] = 0 \}$

where, IRR(x) = Internal rate of return E= discount rate NPV= net present value

Cash Flow Company A

Cash flow	year 0	year 1	year 2	year 3	year 4	year 5	year 6	year 7	year 8	year 9	year 10
(+) Sales		15,300,000	15,912,000	16,548,480	17,210,419	17,898,836	18,614,789	19,359,381	20,133,756	20,939,106	21,776,671
(-) Costs		15,264,506	15,264,506	15,264,506	15,264,506	15,264,506	15,264,506	15,264,506	15,264,506	15,264,506	15,264,506
(-) tax		625	49,585	100,503	153,458	208,532	265,808	325,375	387,325	451,753	518,759
(-) interest		144,000	128,349	111,289	92,693	72,424	50,331	26,249			
(-)Amortization		173,905	189,556	206,616	225,212	245,481	267,574	291,656			
Net cash flow	- 3,948,742	-283,035	280,005	865,566	1,474,550	2,107,894	2,766,571	3,451,595	4,481,925	5,222,847	5,993,406

Cash flow	year 11	year 12	year 13	year 14	year 15	year 16	year 17	year 18	year 19	year 20	year 11
(+) Sales	22,647,73 8	23,553,647	24,495,793	25,475,625	26,494,650	27,554,436	28,656,613	29,802,878	30,994,993	32,234,792	22,647,738
(-) Costs	15,264,50 6	15,264,506	15,264,506	15,264,506	15,264,506	15,264,506	15,264,506	15,264,506	15,264,506	15,264,506	15,264,506
(-) tax	588,444	660,917	736,288	814,675	896,197	980,980	1,069,154	1,160,855	1,256,224	1,355,408	588,444
(-) interest											
(-)Amortization											
Net cash flow	6 794 788	7 628 225	8 494 999	9 396 444	10 333 947	11 308 950	12 322 953	13 377 517	14 474 263	15 614 878	6 794 788

Cash Flow Company B

Cash flow	year 0	year 1	year 2	year 3	year 4	year 5	year 6	year 7	year 8	year 9	year 10
(+) Sales		15,300,000	15,912,000	16,548,480	17,210,419	17,898,836	18,614,789	19,359,381	20,133,756	20,939,106	21,776,671
(-) Costs		12,735,602	12,735,602	12,735,602	12,735,602	12,735,602	12,735,602	12,735,602	12,735,602	12,735,602	12,735,602
(-) tax		199,895	248,855	299,773	352,728	407,802	465,078	524,645	586,595	651,023	718,029
(-) interest		144,000	128,349	111,289	92,693	72,424	50,331	26,249			
(-)Amortization		173,905	189,556	206,616	225,212	245,481	267,574	291,656			
Net cash flow	-8,111,657	2,046,599	2,609,639	3,195,200	3,804,184	4,437,528	5,096,205	5,781,229	6,811,559	7,552,481	8,323,040

Cash flow	year 11	year 12	year 13	year 14	year 15	уеа	r 16	year 17	year 18	year 19	year 20
(+) Sales	22,647,73 8	23,553,647	24,495,793	25,475,625	26,494,650	27,55	4,436	28,656,613	29,802,878	30,994,993	32,234,792
(-) Costs	12,735,60 2	12,735,602	12,735,602	12,735,602	12,735,602	12,73	5,602	12,735,602	12,735,602	12,735,602	12,735,602
(-) tax		787,714	860,187	935,558	1,013,945	1,095,467	1,180,250	1,268,424	1,360,125	1,455,494	1,554,678
(-) interest											
(-)Amortization											
Net cash flow		9,124,422	9,957,859	10,824,633	11,726,078	12,663,581	13,638,584	14,652,587	15,707,151	16,803,897	17,944,512

Feasibility Analysis

Scenario	Plant A		Plant B		
Jeenano	NPV	IRR	NPV	IIR	
Conventional Drying	\$17,039,064	33%	\$17,672,640	37%	
Vacuum Drying	\$26,553,430	40%	\$29,205,867	43%	

- Both Conventional and Vacuum Drying for the two case studies are economically feasible at a discount rate of 15%
- Vacuum drying obtained, for the two case studies, a higher NPV and IRR, which means that is more economically feasible and the best scenario for investment than conventional drying.

Why Better?

	Com	pany A	Company B			
Costs (\$)	Conventional Drying	Vacuum Drying	Conventional Drying	Vacuum Drying		
Raw Material Cost	\$16,061,500	\$12,698,231	\$14,673,750	\$11,174,443		

- The raw material or inventory cost was a factor that impacted the feasibility analysis between the two scenarios
- Conventional drying raw material costs were 21% and 24% more than vacuum drying for Company A and B respectively.

Determine the impact on the work in process (WIP) and cycle time for a flooring manufacturer when vacuum drying technology is compared to conventional drying technology

Lean Manufacturing

- Lean Manufacturing
 - Philosophy to eliminate all non-value added activities (waste)

Waste

- Over processing
- Over production
- Excessive inventories
- Waste in motion
- Waiting
- Transportation
- Defects

17

Value Stream Map

• Value Stream Map (Shook and Rother 2003):

Symbols Used in Microsoft Visio	Meaning of the Symbol
Q	Process
	Timeline: waiting time and cycle time
	Inventory
	Production Flow
Total Cycle Time	Total Time

Little's Law

• Little's Law:

WIP= TH *CT

Simulation WIP Results for Company A

Simulation WIP Results for Company B

Simulation Results for Cycle Time

Results

Cost Comparison

	Comp	bany A	Company B			
Parameter	Conventional Drying Vacuum Drying		Conventional Drying	Vacuum Drying		
Lumber inventory cost	\$16,061,500	\$12,698,231	\$14,673,750	\$11,174,443		
Inventory cost	\$2,388,750	\$626,990	\$2,838,290	\$657 <i>,</i> 083		
Kiln equipment	\$2,575,000	\$6,659,700	\$2,225,000	\$7,566,750		

- Regarding lumber inventory cost, vacuum drying was 21% and 24% less than conventional drying for Company A and B, respectively.
- Regarding inventory cost, vacuum drying was 74% and 77% les than conventional drying for Company A and B, respectively.

Future Work

- Compare vacuum to conventional drying with no air-drying
- Other species
- Other vacuum kilns
- More complex production lines

Study Limitations

The study specifically assessed one single line production of a flooring manufacture, and the results gathered may not reflect the rest of the hardwood industry.

- The results are limited to the conventional and vacuum technology and associated costs used.
- Future state map was based on average customer demand and results from the simulation, seasonal demand variation may not be reflected in the inventory levels.

 This project was founded by the Wood Education and Resource Center (WERC).

Acknowledgements

Questions